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The General Persuasion Game

The results presented in the main text obviously depend on the specific dis-

tribution chosen. In this appendix, we generalize the game to any arbitrary

distribution. We use the generalized game to identify the properties of a dis-

tribution (locations and likelihood) that give rise to our results.

1. Problem

We consider an unobservable evidence-generating process that is characterized

by its theoretical mean. A principal is charged with making an assessment

about the type of this unknown process. We assume that the principal does

not have the capability or capacity to make her own assessment of the type.

Instead, she solicits advice from agents with vested and opposing interests.

The principal’s objective is to make the best possible assessment of the type

of the process. She therefore follows the advice of the agent who is most

credible, given a publicly observable sample drawn from the unknown process.

We assume that the principal’s assessment of an agent’s advice is noisy so that

her decision comes with error.

2. Notation

We refer to the unknown process by its theoretical mean as type y ∈ R. A

principal is charged with making an assessment ŷ ∈ R of the unknown type of

the process. We denote by ŷ the principal’s decision in this game of persuasion.

The principal’s objective is to make the best assessment, given an available
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(and publicly observable) sample of evidence drawn according to the unknown

process. We refer to the objectively best assessment as ȳ. By assumption,

the principal does not have access to this assessment but rather solicits advice

from outside experts.

The principal solicits advice from two agents, i = L,R. Each agent’s advice

is modeled as an interpretation that characterizes the sample as coming from

a process of type yi with credibility χi ≥ 0. The principal assesses the agents’

advice and chooses the most credible of the two. We assume this assessment

of credibility is noisy and refer to it as χ̃i = χi exp ξi for i = L,R, where ξi

are independently extreme value distributed with location 0 and scale 1/λ.1

The principal therefore follows agent R’s advice if χ̃R > χ̃L and agent L’s

otherwise. If χ̃L = χ̃R, then the principal flips a fair coin. This is akin to

the structure of the logit choice model. The principal sides with agent R with

probability

θ̃ = Pr(χ̃R > χ̃L) =
exp(λ logχR)

exp(λ logχR) + exp(λ logχL)
=

χλR
χλR + χλL

. (A1)

We define the incredibility of agent R’s advice as

xR =
1

χλR
(A2)

and of agent L’s advice as

xL = − 1

χλL
. (A3)

An agent’s advice strategy can thus be represented by a pair ai = (xi, yi) ∈ Ai

with a proposed type yi ∈ R and an incredibility of that advice of xL ∈ R− for

1The structure in Jia (2008) is less restrictive, requiring the random variable ξi to belong

to the inverse exponential distribution.
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agent L and xR ∈ R+ for agent R. Because we measure agent L’s incredibility

with a negative number, in (x, y)-space, agent L’s strategy space AL is to the

left of the y-axis, whereas agent R’s strategy space AR is to the right of the

y-axis. Advice located further from the y-axis is less credible (that is, more

incredible).

We further limit the agent’s strategy space to be a compact and convex

subset of R2 so that AL ⊂ R− × R and AR ⊂ R+ × R. We assume the set

of feasible strategies is characterized by a type-credibility tradeoff. In other

words, the further advice yi is from the objectively best assessment ȳ, the

less credible this advice will be with a value of χi, or, alternatively, the more

incredible the advice will be with a higher value of |xi|. Extreme advice with

very high (or low) type yi and low incredibility |xi| is therefore not feasible,

and the strategy space is convex.

Using the expressions for agent’s incredibility, the probability that the prin-

cipal follows agent R’s advice in equation (A1) can be rewritten as

θ̃(xL, xR) =
−xL

xR − xL
. (A4)

The principal’s assessment of the process type is yR when she follows agent

R’s advice and yL when she follows L’s advice. In expectations, the principal’s

assessment2 and decision is thus

ŷ(aL, aR) = θ̃(xL, xR)yR +
(
1− θ̃(xL, xR)

)
yL (A5)

=
xRyL − xLyR
xR − xL

.

2This expected assessment ŷ is also the outcome of a decision-maker who minimizes

a quadratic loss function −wR (yR − ŷ)2 − wL (yL − ŷ)2, that is, the weighted sum of the

squared deviations of assessment ŷ from the agent’s proposed types yi.
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It is the credibility-weighted sum of the agent’s location advice. We can further

rewrite the expression in equation (A5) as

ŷ(aL, aR) = yL −m(aL, aR)xL = yR −m(aL, aR)xR (A6)

where

m(aL, aR) =
yR − yL
xR − xL

(A7)

is the slope of the line connecting the two points aL = (xL, yL) and aR =

(xR, yR) in (x, y)-space.

The two agents have vested and opposing interests. We assume that the

agents’ payoffs are directly affected by the principal’s assessment of type.

Agent L prefers low values of ŷ, whereas agent R prefers high values. For given

yR > yL, the expression for the principal’s expected decision in equation (A5)

implies that both agents will choose the most credible interpretations given

their advice types yi. For agent L, this means the highest possible xL ∈ R−;

and for agent R the lowest possible xR ∈ R+. We define these “incredibility

frontiers” as

x̂L(yL, ·) = max {x : (x, yL) ∈ AL} (A8)

and

x̂R(yR, ·) = min {x : (x, yR) ∈ AR} (A9)

where aL = (x̂L(y), y) dominates any other strategy for agent L with a given

y value, and similarly for aR = (x̂R(y), y). These incredibility frontiers are the

hulls of Ai facing the y-axis in (x, y)-space.
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An incredibility frontier x̂i(yi, ·) depends on the agent’s advice type yi as

well as environmental characteristics (for example, evidence sample, a poten-

tial prior bias by the principal, the noise parameter λ, or the expertise of the

agent) captured by the properties of the agent’s strategy space Ai. This strat-

egy space Ai and thus the agent’s incredibility frontier does not depend on the

other agent’s strategy.

3. Equilibrium Concept

A persuasion game is a simultaneous-move, non-cooperative game between

two agents i = L,R providing strategic advice ai ∈ Ai to maximize payoffs

πL = −ŷ(aL, aR) for agent L and πR = ŷ(aL, aR) for agent R with ŷ(aL, aR)

defined in equation (A6). A Nash equilibrium in this game is a strategy profile

(a∗L, a
∗
R) such that

ŷ(a∗L, a
∗
R) ≤ ŷ(aL, a

∗
R) ∀aL ∈ AL for agent L

ŷ(a∗L, a
∗
R) ≥ ŷ(a∗L, aR) ∀aR ∈ AR for agent R

 . (A10)

From the expression for the principal’s decision in equation (A6), we can

conclude that, because agent L’s incredibility is by definition negative, xL < 0,

if m(a′L, a
′
R) > m(aL, aR), then either m(a′L, aR) > m(aL, aR) or m(aL, a

′
R) >

m(aL, aR). In other words, if a strategy profile (aL, aR) does not result in a

maximum for m, at least one of the agents can unilaterally move to increase

the slope.

Lemma A1. Both agents present advice ai to maximize the slope m(aL, aR).

An immediate implication of Lemma A1 is that, if it exists, a Nash equi-

librium (a∗L, a
∗
R) in this game determines a line of maximum slope m(a∗L, a

∗
R).
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4. Equilibrium Results

In the sequel, we present our main results from the general persuasion game

and relate them back to the model presented in the main text of the paper.

4.1. Nash Equilibrium

By Lemma A1, in equilibrium, the advice strategy profile (a∗L, a
∗
R) ∈ AL ×AR

will be such that slope m(aL, aR) is maximized. As AL is all on or above the

line with slope m connecting aL and aR, and AR is all on or below that line,

it follows that there is a unique line with this maximum slope, m∗. Agents

L and R can choose any points along this line in AL and AR, or any mixed

strategies between such points (as a mixture of pure strategies), but the value

of the game ŷ∗ ≡ ŷ(a∗L, a
∗
R) is the y-intercept of the line of maximum slope

between the choice sets. We summarize these results in Theorem A1.

Theorem A1. A pure strategy Nash equilibrium of the persuasion game will

exist if, and only if, the slope function m(aL, aR) has a maximum value on

AL × AR, that is, when there is a unique common line of support below AL

and above AR. If this line meets AL or AR in more than one point, then there

are also mixed strategy equilibria that are mixtures of pure strategies along this

line, and result in the same assessment ŷ for the game.

Two properties of this result are worth mentioning. First, if the projections

of AL and AR onto the y-axis are bounded, then there is a maximum slope

line. More generally, if a line of positive slope cuts off a bounded region of

AL below the line and a bounded region of AR above the line, then there is a
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maximum slope line. This is true if the incredibility grows faster than linearly

for large positive and large negative values.

Second, if x̂L and x̂R are strictly concave, differentiable functions, de-

fined on a convex subset of the real line, with unbounded derivatives, then

these functions have unique maxima and minima, respectively, and define

the relevant frontiers of the strategy sets. These assumptions also guaran-

tee the existence of a unique Nash equilibrium solution a∗L = (x̂L(y∗L), y∗L) and

a∗R = (x̂R(y∗R), y∗R), and the line through these points is simultaneously tangent

to both the L and R curves.

In Figure A1, we relate the general game to our litigation game in the

main test by using the specific parameterization of the game in the main

text. The unobservable type is the theoretical mean of the Beta(α, β) dis-

tribution, y = µ, and the inverse credibility is the reciprocal likelihood or

“incredibility,” x = 1/L λ. Agent L is the defendant D (preferring low-

valued outcomes) and agent R is the plaintiff (preferring high-valued out-

comes), where AL is the set
(
−1/L λ

D, µD
)

and AR is the set
(
1/L λ

P , µP
)
, both

defined over all possible Beta(α, β) distribution functions. This means, there

are multiple parameterizations to obtain a fixed µ = α/ (α + β) and varying

σ2 = µ (1− µ) / (1 + α + β). Alternatively, there are multiple parameteriza-

tions (and thus likelihoods) to obtain a fixed σ2 and varying µ (Leonard and

Hsu 1999).

With this set up, the x-axis in Figure A1 measures incredibility 1/L λ as

a function of the type µ plotted on the y-axis. The dashed lines represent

the reciprocal likelihoods for varying proposed type y, holding the variance

σ2 fixed. This gives a family of overlapping curves, the envelope of which is
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also drawn (solid curve), and whose union defines the AR set to the right, and

which is mirrored in the AL set to the left. The line of maximum slope is drawn

between the points in these sets, defining the optimal advice strategies, a∗i , for

the two sides. The y-intercept of the line is denoted by a dot on the vertical

axis. It represents the equilibrium assessment ŷ∗ of the game. This assessment

is slightly above the maximum likelihood (that is, minimum incredibility) value

ȳ, marked by a horizontal line between the “peaks” of the two sets, AL and

AR.

[Figure 1 about here.]

4.2. Payoff Shading

We have denoted the objectively best assessment of the type as ȳ. Suppose

that this type ȳ is also the most credible advice the agents can give. That

means, the maximum of x̂L < 0 and the minimum of x̂R > 0 (that is, the

points where these come closest to the y-axis) are at the same ȳ. This then

implies that that the strategy (x̂L(yL), yL) for L with yL > ȳ is dominated by

(x̂L(ȳ), ȳ). Similarly, a strategy (x̂R(yR), yR) for R with yR < ȳ is dominated

by (x̂R(ȳ), ȳ). Because the incredibility functions x̂i cannot be differentiable

and have a corner at ȳ, agents will “shade” their advice, with L offering a type

y∗L less than the most likely ȳ, and R offering a type y∗R greater than this ȳ.

Theorem A2. In equilibrium, the agents shade and present advice a∗i with

types y∗i on either side of the most credible type ȳ. The Nash equilibrium

advice strategies with proposed types y∗L and y∗R satisfy y∗L < ȳ < y∗R.
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The result in Theorem A2 is analogous to Result 1 in the main text. The

agents shade their advice in their favor. Moreover, if the incredibility functions

x̂i are strictly concave with |x̂i(y)| > |x̂i(ȳ)| increasing in |y − ȳ|, then the

equilibrium types presented by the agents are finite, y∗L > −∞ and y∗R < ∞.

The agents therefore engage in payoff moderation (Konrad 2009).

4.3. Bias

If the shape of the incredibility function is not symmetric about the most

credible ȳ, but instead favors one side over the other with less incredibility

for equal offsets from ȳ, then the equilibrium assessment will be biased from ȳ

in the direction of that side. In other words, |ŷ∗ − ȳ| > 0. We illustrate this

in Figure A1 where the likelihood function for the litigation game example

decreases more slowly for Beta(α, β) distributions having µ greater than the

maximum likelihood estimate (ȳ = µ
ML

) than it does for µ less than this value.

Heuristically, if the evidence is closer to the lower range of the Beta(α, β)

distribution, then there is more “room” to explain the evidence with a larger

µ than with a smaller µ.

It may be that the principal holds a biased prior or that there are differences

in the capabilities of the agents such that one side offering the theory with type

ȳ would be viewed more favorably than the other offering what should amount

to the same most credible theory. We set aside this sort of asymmetry between

the sides and assume:

x̂L(ȳ) = −x̂R(ȳ). (A11)

This assumption means that either player can offer up this best theory with
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the same resulting weight. It implies that the identity of the agent does not

matter

Because, by Theorem A2, agent L shades down, yL < ȳ, and agent R shades

up, yR > ȳ, values of x̂L for yL > ȳ and values of x̂R for yR < ȳ are observed

only off equilibrium. For the properties of the equilibrium decision ŷ∗ we can

therefore ignore these values. This means that we may as well take a single

function x̂ describing both parties’ incredibility functions: x̂(y) = −x̂L(y) for

y ≤ ȳ and x̂(y) = x̂R(y) for y ≥ ȳ. The bias of the principal’s decision relative

to ȳ is then determined by how quickly the incredibility increases for y > ȳ as

compared to y < ȳ as a function of the difference from the most credible type

ȳ. In Theorem A3 below, we make use of the following definitions:

Definition A1 (Symmetry). The incredibility function x̂(y) is symmetric

about y = ȳ if, for every δ > 0, x̂(ȳ − δ) = x̂(ȳ + δ).

Definition A2 (Credibility Costs). Agent L has lower credibility costs in x̂

(and agent R has higher credibility costs) if, for every δ > 0, x̂(ȳ−δ) < x̂(ȳ+δ);

that is, advice aL with type shaded down by δ is more credible than advice aR

with type shaded up by an equal amount δ. Analogously for agent R.

Definition A3 (Monotonic Credibility Costs). Agent L has monotonically

lower credibility costs (and agent R has monotonically higher credibility costs)

if x̂(ȳ + δ)− x̂(ȳ − δ) is a strictly increasing function for δ > 0. Analogously

for agent R.

Theorem A3. For the general persuasion game with equilibrium strategies

a∗L = (−x̂(y∗L), y∗L) and a∗R = (x̂(y∗R), y∗R) and equilibrium assessment ŷ∗ =

ŷ(a∗L, a
∗
R), the following bias properties hold:

11



1. If x̂(y) is symmetric, then y∗R − ȳ = ȳ − y∗L and ŷ∗ = ȳ.

2. If agent L has lower credibility costs, then ŷ∗ < ȳ, and the equilibrium

assessment is biased down. If agent R has lower credibility costs, then

ŷ∗ > ȳ, and the equilibrium assessment is biased up.

3. If agent L has monotonically lower credibility costs, then agent L’s ad-

vice a∗L exhibits more shading than agent R’s advice, ȳ − y∗L > y∗R − ȳ.

Analogously for agent R.

Proof. 1. Suppose x̂(y) is symmetric (Definition A1). If y∗R = ȳ + δ, then

for y′L = ȳ − δ and a′L = (−x̂(y′L), y′L), x̂(y′L) = x̂(y∗R) so that ŷ∗ ≤

ŷ(a′L, a
∗
R) = ȳ since L can do no worse than respond to a∗R with strategy

a′L. Similarly if y∗L = ȳ − δ, taking y′R = ȳ + δ shows ŷ∗ ≥ ȳ. Hence

ŷ∗ = ȳ, and the same δ = y∗R − ȳ = ȳ − y∗L.

2. With lower credibility costs (Definition A2) for agent L, x̂(ȳ − δ) <

x̂(ȳ + δ) for all δ > 0. If y∗R = ȳ + δ, then take y′L = ȳ − δ and

a′L = (−x̂(y′L), y′L). Because x̂(ȳ − δ) < x̂(ȳ + δ), ŷ∗ ≤ ŷ(a′L, a
∗
R) < ȳ.

Analogously for agent R.

3. With monotonically lower credibility costs (Definition A3) for agent L,

x̂(ȳ + δ) − x̂(ȳ − δ) is strictly increasing. Then, for δ = y∗R − ȳ, the

derivative −x̂′(ȳ − δ) < x̂′(ȳ + δ) = x̂′(y∗R) = −x̂′(y∗L) because the max-

imum slope line is tangent to both incredibility curves at the equilib-

rium solution. But x̂′(y) is strictly increasing so y∗L < ȳ − δ, that is,

δ = y∗R − ȳ < ȳ − y∗L. The analogous arguments hold when R has lower

credibility costs. Q.E.D.
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4.4. Convergence as n→∞

The illustration in Figure A1 is based on an evidence sample with only two

values: z̄ = (1/5, 1/2). In other words, there is not a lot of evidence constraining

the agents’ advice. With more evidence, the likelihood function has a narrower

peak, so advice away from the maximum likelihood become much less credible.

In general, as the sample size n increases, we expect the credibility function x̂

to collapse on ȳ for the true process generating the evidence.

More specifically, suppose a family of incredibility functions denoted by

x̂(y|n) are parameterized by a variable n denoting the amount of evidence

available. Suppose that the most credible ȳ is the same for all incredibility

functions x̂(y|n). Scaling the incredibility by a constant factor does nothing to

change the outcome of the game. We thus assume that these functions are all

normalized to one, x̂(ȳ|n) = 1. The notion of narrowing incredibility functions

is then captured formally as a hypothesis of the following consistency result.

Theorem A4. Let the equilibrium assessment in the persuasion game with

incredibility function x̂(y|n) be denoted by ŷ∗n. Suppose that for every ε > 0,

for all sufficiently large n, and any y we have x̂(y|n) > |y − ȳ|/ε. Then

lim
n→∞

ŷ∗n = ȳ.

Proof. Suppose ε > 0 is given and take N so for all n ≥ N and any y we

have x̂(y|n) > |y − ȳ|/ε. Let a∗L = (x̂(y∗L|n), y∗L) and a∗R = (x̂(y∗R|n), y∗R) be

equilibrium strategies for the persuasion game with x̂(y|n). Let a′L = (−1, ȳ)

be the maximally credible strategy for agent L. Then

ŷ∗n = ŷ(a∗L, a
∗
R) ≤ ŷ(a′L, a

∗
R) =

x̂(ŷ∗|n)ȳ + ŷ∗

x̂(ŷ∗|n) + 1
< ȳ +

ŷ∗ − ȳ
x̂(ŷ∗|n)

< ȳ + ε.
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On the other hand, taking a′R = (1, ȳ) shows ŷ∗n ≥ ŷ(a∗L, a
′
R) > ȳ− ε in similar

fashion. Hence, for every ε > 0, for all sufficiently large n, |ŷ∗n − ȳ| < ε, that

is, lim
n→∞

ŷ∗n = ȳ. Q.E.D.

This result is stronger than what we illustrate with Result 5 in the main text

where we show that the bias decreases with more evidence. In Theorem A4,

we show that the equilibrium assessment converges to the most credible assess-

ment ȳ. In other words, any bias in assessments away from the most credible

ȳ due to the adversarial process disappears with increasing evidence. Advice

that deviates from the most credible explanation simply faces an increasing

credibility penalty the more evidence there is. The argument gives a bound for

the deviation of ŷ∗n from ȳ, but the argument cannot tell us that this bias de-

creases monotonically with n without much more detailed assumptions about

the dependence of x̂(y|n) on n.
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Figure A1: Advice in the Simple Litigation Game
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