Adversarial Decision Making: Choosing Between Models Constructed by Interested Parties

Luke Froeb^{\dagger} Bernhard Ganglmair^{\ddagger} Steven Tschantz^{\dagger}

[†] Vanderbilt University

[‡] University of Texas at Dallas

March 24, 2016

Outline

- **Research Question:** How good is adversarial decision-making?
- Model: Litigation as a persuasion game
 - **Evidence** (produced and discovered) is given
 - Parties compete to explain what it means
 - Court chooses most credible explanation
- **Results:** we explain ...
 - why adversaries interpret evidence differently;
 - how such interpretations affect decisions;
 - and compare adversarial and inquisitorial decision making.
- Answer: adversarial decision making performs (surprisingly?) well

General Motivation

 $\mathbf{Two}\ \mathbf{stages}$ of adversarial justice:

- Evidence production: parties produce and report evidence
- **Decision making:** court chooses between alternative interpretations of the evidence, constructed by interested parties

Question 1

How does adversarial decision making compare to an inquisitorial alternative?

Specific Motivation

Case: OFT vs. Imperial Tobacco (2011)

- **OFT:** Vague (not falsifiable) anticompetitive theory (*obfuscation* as trial strategy)
- Imperial: Two years to "pin down" implications of OFT theory
- Fact witnesses rebutted OFT theory
 - OFT asked permission to change theory in middle of case
- \blacksquare **Decision:** Tribunal quashed £112m fine

Question 2

When is obfuscation an optimal strategy?

Litigation as a Persuasion Game

- "It is your job to sort the information before trial, organize it, simplify it and present it to the jury in a simple *model* that explains what happened and why you are entitled to a favorable verdict."
- "Remember that there is a lawyer on the other side who will be trying to sell the jury a story that contradicts yours. ... If both sides do competent jobs, the jury will have to *choose between two competing versions of events*"

Tanford (2009)

Indiana University Law School classroom material; emphasis added

Model: Principal and Two Agents

- Decision-making principal (e.g., Court) solicits advice from agents with opposing interests to interpret evidence (e.g., Plaintiff P and Defendant D)
 - relies on expertise of agents to construct **models** of evidence-generating process
- Principal lacks expertise to construct her own model, but can assess credibility of agents' models
- Principal's objective: choose the most credible model and implement it

Metaphor to Statistical Model Selection

- Court analogous to researcher
- Evidence analogous to data, $\bar{z} = (z_1, z_2, ..., z_n)$
- Parties' interpretations Z_s analogous to models of data-generating process
 - $Z_s \sim F_s(\mu_s, \sigma_s)$ where μ_s is unknown liability, damages, or probability of guilt
- Credibility analogous to likelihood

$$\mathscr{L}(Z_s|\bar{z}) = \prod_{i=1}^n f(z_i|Z_s) \text{ for } s = P, D$$

■ Court choosing more credible interpretation is analogous to researcher choosing more likely model, e.g., for plaintiff if L_P > L_D.

Inquisitorial Benchmark

- Suppose: An **inquisitorial court** has ability to construct models for herself.
- Uses the maximum likelihood estimator, due to its optimality properties (DeGroot, 1970):

$$Z_{\scriptscriptstyle ML} \equiv \arg \max_{Z \in \mathcal{F}} \mathscr{L}(Z|\bar{z})$$

where \mathcal{F} is the set of admissible models and $\mu_{\scriptscriptstyle ML}$ is the "most likely" damage estimate

Perfect (Adversarial) Court

Probability of a plaintiff win:

$$\theta = \begin{cases} 1 & \text{for } \mathscr{L}_P > \mathscr{L}_D \\ \frac{1}{2} & \text{for } \mathscr{L}_P = \mathscr{L}_D \\ 0 & \text{for } \mathscr{L}_P < \mathscr{L}_D \end{cases}$$

Damages (paid by defendant to plaintiff)

$$\hat{\mu} = \begin{cases} \mu_P & \text{for } \mathscr{L}_P > \mathscr{L}_D \\ \frac{1}{2} \mu_P + \frac{1}{2} \mu_D & \text{for } \mathscr{L}_P = \mathscr{L}_D \\ \mu_D & \text{for } \mathscr{L}_P < \mathscr{L}_D. \end{cases}$$

Perfect Court (cont.)

Adversarial equilibrium: $Z_P = Z_D = Z_{ML}$

- \blacksquare Parties choose same, most likely model Z_{ML}
- Similar result found in final-offer arbitration, where parties make the same utility maximizing offer (Crawford, 1979).

Adversarial outcome of a "perfect court" is equivalent to the **inquisitorial** benchmark

Noisy (Adversarial) Court

• Court's "perceived" likelihood = signal \times noise:

$$\widetilde{\mathscr{L}}_P = \mathscr{L}_P \exp \xi_P \widetilde{\mathscr{L}}_D = \mathscr{L}_D \exp \xi_D$$

where ξ_P and ξ_D are "noise", Gumbel $(0, 1/\lambda)$ distributed

• Probability of a plaintiff win:

$$\widetilde{\theta} = \Pr(\widetilde{\mathscr{L}_P} > \widetilde{\mathscr{L}_D}) = \frac{\mathscr{L}_P^{\lambda}}{\mathscr{L}_P^{\lambda} + \mathscr{L}_D^{\lambda}}.$$

- \blacksquare This signal \times noise specification used by
 - McFadden(1974), Tullock (1980), McKelvey and Palfrey (1995), Skaperdas and Vaidya (2012)

Noisy Court: Three Special Cases

$\lambda = 0$	Coin toss; uninformative
$\lambda = 1$	Tullock lottery
$\lambda ightarrow \infty$	<i>Perfect Court</i> and inquisitorial
	benchmark

Noisy Court: Outcomes

• Expected court decision (i.e., damages):

$$\hat{\mu}(Z_P, Z_D) = \tilde{\theta}\mu_P + (1 - \tilde{\theta})\mu_D = \frac{\mathscr{L}_P^{\lambda} \cdot \mu_P + \mathscr{L}_D^{\lambda} \cdot \mu_D}{\mathscr{L}_P^{\lambda} + \mathscr{L}_D^{\lambda}}$$

Variance of decision:

$$\operatorname{Var}(\hat{\mu}) = \tilde{\theta} \left(1 - \tilde{\theta} \right) \left(\mu_P - \mu_D \right)^2$$

- Plaintiff faces tradeoff:
 - A model with a bigger μ_P , increases payoff following a win ...
 - but also reduces probability of a win, $\Pr(\widetilde{\mathscr{L}_P} > \widetilde{\mathscr{L}_D}).$
 - Analogously for defendant.

Nash Equilibrium

- Plaintiff prefers high $\hat{\mu}$; defendant prefers low $\hat{\mu}$.
- Strategies are Z_s from an admissible set \mathcal{F}
- Nash equilibrium defined as:

Plaintiff:	$\hat{\mu}(Z_P^*, Z_D^*) \ge \hat{\mu}(Z_P, Z_D^*)$	$\forall Z_P \in \mathcal{F}$
Defendant:	$\hat{\mu}(Z_P^*, Z_D^*) \le \hat{\mu}(Z_P^*, Z_D)$	$\forall Z_D \in \mathcal{F}$

Model Parameterization

- Evidence is vector \bar{z} of n independent draws $z_i \in (0, 1)$ with sample mean $\bar{\mu}$
- z_i drawn from Beta (α, β) distribution

- with mean
$$\mu = \mathcal{E}(z_i) = \frac{\alpha}{\alpha + \beta}$$

- with variance $\sigma^2 = \operatorname{Var}(z_i) = \frac{\alpha\beta}{(\alpha+\beta)^2(1+\alpha+\beta)}$
- Agents s = P, D chooses model $Z_s = (\alpha_s, \beta_s)$ to explain evidence vector \overline{z} .

Shading, Obfuscation, and Bias

Result

Both parties "shade" the evidence in their favor so that $0 < \mu_{\rm D}^* < \mu_{\rm ML} < \mu_{\rm P}^* < 1.$

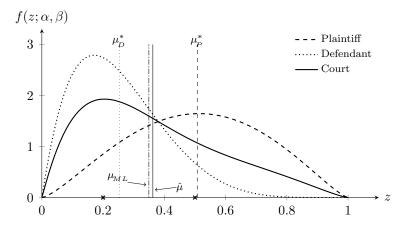
Result

The party with less favorable evidence follows an "obfuscation strategy" and chooses a model with (i) a location further away from the most likely model and (ii) with a spread larger than its rival's.

Result

The court's assessment of liability is biased in favor of the party with, on average, less favorable evidence.

Numerical Example: Evidence is (1/5, 1/2)



Numerical Example

•
$$Z_s = (\alpha_s, \beta_s)$$

•
$$\bar{z} = (1/5, 1/2)$$

• Equilibrium strategies

-
$$\mu_P = 0.51, \ \sigma_P^2 = 0.04.$$

-
$$\mu_D = 0.25, \ \sigma_D^2 = 0.02.$$

- Court decision
 - Probability of a plaintiff win: $\tilde{\theta} = 0.43$
 - Likelihood ratio $\mathscr{L}_P/\mathscr{L}_D = 0.76$
 - Bias (relative to inquisitorial benchmark):

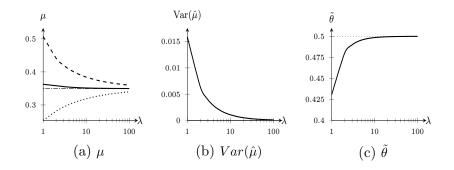
$$\hat{\mu} = 0.36 > 0.35 = \mu_{\rm ML}$$

As Court Noise Shrinks

Result

As court noise disappears, $\lambda \to \infty$, (i) the parties models converge to the maximum likelihood estimator, $\mu_s \to \mu_{ML}$, for s = P, D, as does the court's estimator, $\hat{\mu} \to \mu_{ML}$; and (ii) the probability of a plaintiff win approaches 50%, $\tilde{\theta} \to 1/2$. The court's estimator converges faster than do the models of the parties.

As Court Noise Shrinks

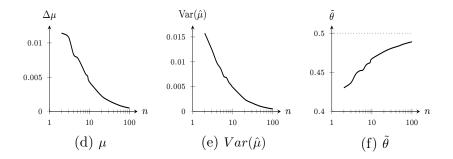


As Amount of Evidence Grows

Result

As the amount of evidence increases, $n \to \infty$, the court's estimator converges in probability to the true $\mu = \alpha/\alpha + \beta$, as do the models of the parties, $\mu_s \to \alpha/\alpha + \beta$ for s = P, D.

As Amount of Evidence Grows



Discussion: Why This Model?

• More realistic than scientific inquiry with

 $\mathrm{Hypothesis} \Rightarrow \mathrm{Evidence} \Rightarrow \mathrm{Decision}$

Instead: hypotheses (models) **strategically chosen** to influence decisions with

 $\texttt{Evidence} \Rightarrow \texttt{Hypothesis} \Rightarrow \textit{Decision}$

- **Captures trade-off**: Claims further from data are less credible
- **• Positive justification**: explains competing claims
- Prediction: Pr(plaintiff win) → 1/2 as court noise disappears or more evidence is available

Answers to Motivating Questions

Question 1

Adversarial decision making looks good

- Bias small, especially when compared to models chosen by parties
- Bias arises only when likelihood is asymmetric
- Bias and variance disappear with better court decisions, more evidence

Question 2

Obfuscation arises when likelihood is asymmetric

 Party with location further from the evidence chooses a larger spread Please send any comments or suggestions to luke.froeb@owen.vanderbilt.edu, ganglmair@utdallas.edu, or steven.tschantz@vanderbilt.edu

Appendix: General Persuasion Game

- **Players:** L ("left") and R ("right")
- Strategies: advice is a pair $a_i = (x_i, y_i)$
 - y_i is the "location" of the frame: $y_i \in \mathbb{R}$
 - x_i is the "incredibility" of the frame (inverse of credibility χ_i): $x_L \in \mathbb{R}^-$ and $x_R \in \mathbb{R}^+$
- Expected Payoffs:
 - the credibility-weighted average of the locations:

$$\hat{y}(a_L, a_R) = \frac{w_R}{w_R + w_L} y_R + \frac{w_L}{w_R + w_L} y_L \quad \text{with} w_i = 1/|x_i|$$

- Decision $\hat{y}(a_L, a_R)$ is y-intercept of the line connecting the advices of the agents (see figure)
- Both players try to maximize slope

Appendix: Parameterized

